Author Affiliations
Abstract
1 High Power Laser Science and Engineering, Cambridge University Press, Cambridge, UK
2 AWE, Aldermaston, Reading, Berkshire, UK
3 CIFS, Blackett Laboratory, Imperial College London, London, UK
4 Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
David Neely was an internationally recognised scientist who formed collaborations and friendships across the world. His passion for his work always shone through. He always made time for early-career scientists and became a mentor and supervisor to many. He was an active Editorial Board Member of the international journal High Power Laser Science and Engineering. Sadly, David was taken from us much too early. In this Editorial we pay tribute to his work through his publications in the journal.
Editorial David Neely tribute 
High Power Laser Science and Engineering
2021, 9(1): 010000e7
Author Affiliations
Abstract
1 Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3 Climate and Space Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
4 AWE plc, Aldermaston, Reading RG7 4PR, UK

In 2018 the journal High Power Laser Science and Engineering produced a Special Issue on Laboratory Astrophysics. The scope of the special issue was to span the latest research and reviews on the following topics related to laboratory astrophysics and related phenomena. The topics invited for inclusion were:

High Power Laser Science and Engineering
2019, 7(1): 01000e19
Author Affiliations
Abstract
AWE plc, Aldermaston, Reading RG7 4PR, UK
The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mm thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mm 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.
contrast frequency conversion ultra-high intensity 
High Power Laser Science and Engineering
2018, 6(3): 03000e47
Author Affiliations
Abstract
1 Science and Technology Facilities Council, Rutherford Appleton Laboratory, UK
2 Scitech Precision Ltd, Rutherford Appleton Laboratory, UK
3 Kansai Photon Science Institute, QST, Kyoto, Japan
4 General Atomics, San Diego, USA
5 Research Center of Laser Fusion, CAEP, Mianyang, China
6 AWE plc, Aldermaston, UK
7 CIFS, Blackett Laboratory, Imperial College London, UK
high-power laser high-power laser-related laser components target design and fabrication. 
High Power Laser Science and Engineering
2018, 6(2): 02000e13
Author Affiliations
Abstract
1 AWE, Aldermaston, Reading RG7 4PR, UK
2 STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ‘petawatt class’ in this context is a laser that delivers >200 TW.
diode pumped high intensity high power lasers megajoule petawatt lasers 
High Power Laser Science and Engineering
2015, 3(1): 010000e3
Author Affiliations
Abstract
AWE, Aldermaston, Reading RG7 4PR, UK
The Atomic Weapons Establishment (AWE) is tasked with supporting Continuous At Sea Deterrence (CASD) by certifying the performance and safety of the national deterrent in the Comprehensive Test Ban Treaty (CTBT) era. This means that recourse to further underground testing is not possible, and certification must be achieved by supplementing the historical data with the use of computer calculation. In order to facilitate this, AWE operates some of the largest supercomputers in the UK. To validate the computer codes, and indeed the designers who are using them, it is necessary to carry out further experiments in the right regimes. An excellent way to meet many of the requirements for material property data and to provide confidence in the validity of the algorithms is through experiments carried out on high power laser facilities.
high energy density physics HEDP high performance computing HPC high power lasers 
High Power Laser Science and Engineering
2014, 2(4): 04000e40
Author Affiliations
Abstract
1 Centre for Inertial Fusion Studies (CIFS), Imperial College London, UK
2 AWE plc, Aldermaston, UK
3 Central Laser Facility, STFC Rutherford Appleton Laboratory, UK
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility (CLF), STFC (Science and Technology Facilities Council) Rutherford Appleton Laboratory (RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of Astra-Gemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
petawatt laser contrast wavefront correction plasma mirror 
High Power Laser Science and Engineering
2014, 2(4): 04000e34

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!